William Wickner - Publications

Affiliations: 
Biochemistry Dartmouth College, Hanover, NH, United States 
Area:
"preprotein translocase" from E. coli
Website:
http://www.dartmouth.edu/~wickner/

215 high-probability publications. We are testing a new system for linking publications to authors. You can help! If you notice any inaccuracies, please sign in and mark papers as correct or incorrect matches. If you identify any major omissions or other inaccuracies in the publication list, please let us know.

Year Citation  Score
2024 Orr A, Wickner W. Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion. Molecular Biology of the Cell. mbcE24020060. PMID 38536444 DOI: 10.1091/mbc.E24-02-0060  0.458
2023 Orr A, Wickner W. MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion. Molecular Biology of the Cell. 34: ar123. PMID 37672336 DOI: 10.1091/mbc.E23-06-0228  0.445
2023 Wickner W, Lopes K, Song H, Rizo J, Orr A. Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Molecular Biology of the Cell. mbcE23020052. PMID 37314849 DOI: 10.1091/mbc.E23-02-0052  0.464
2023 Orr A, Wickner W. PI3P Regulates Multiple Stages of Membrane Fusion. Molecular Biology of the Cell. mbcE22100486. PMID 36735517 DOI: 10.1091/mbc.E22-10-0486  0.467
2022 Orr A, Wickner W. Sec18 Supports Membrane Fusion by Promoting Sec17 Membrane Association. Molecular Biology of the Cell. mbcE22070274. PMID 36103252 DOI: 10.1091/mbc.E22-07-0274  0.464
2022 Orr A, Song H, Wickner W. Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Molecular Biology of the Cell. mbcE21110583. PMID 35171720 DOI: 10.1091/mbc.E21-11-0583  0.387
2021 Song H, Wickner WT. Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/αSNAP without HOPS. Elife. 10. PMID 34698639 DOI: 10.7554/eLife.73240  0.483
2021 Torng T, Wickner W. Phosphatidylinositol and phosphatidylinositol-3-phosphate activate HOPS to catalyze SNARE assembly, allowing small headgroup lipids to support the terminal steps of membrane fusion. Molecular Biology of the Cell. mbcE21040191. PMID 34495682 DOI: 10.1091/mbc.E21-07-0373  0.442
2021 Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. Elife. 10. PMID 33944780 DOI: 10.7554/eLife.67578  0.428
2020 Lee M, Wickner W, Song H. A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Proceedings of the National Academy of Sciences of the United States of America. PMID 32213587 DOI: 10.1073/pnas.2000923117  0.575
2020 Torng T, Song H, Wickner W. Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Molecular Biology of the Cell. mbcE20010019. PMID 32160129 DOI: 10.1091/mbc.E20-01-0019  0.538
2019 Jun Y, Wickner W. Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proceedings of the National Academy of Sciences of the United States of America. PMID 31685636 DOI: 10.1073/pnas.1913985116  0.518
2019 Song H, Wickner W. Tethering guides fusion-competent -SNARE assembly. Proceedings of the National Academy of Sciences of the United States of America. PMID 31235584 DOI: 10.1073/pnas.1907640116  0.588
2017 Harner M, Wickner W. Assembly of intermediates for rapid membrane fusion. The Journal of Biological Chemistry. PMID 29208657 DOI: 10.1074/jbc.RA117.000791  0.585
2017 Song H, Orr AS, Duan M, Merz AJ, Wickner WT. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. Elife. 6. PMID 28718762 DOI: 10.7554/Elife.26646  0.699
2017 Song H, Wickner W. A Short Region Upstream of the Yeast Vacuolar Qa SNARE Heptad-Repeats Promotes Membrane Fusion through Enhanced SNARE Complex Assembly. Molecular Biology of the Cell. PMID 28637767 DOI: 10.1091/mbc.E17-04-0218  0.545
2017 Wickner W, Rizo J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Molecular Biology of the Cell. 28: 707-711. PMID 28292915 DOI: 10.1091/mbc.E16-07-0517  0.586
2017 Orr A, Song H, Rusin SF, Kettenbach AN, Wickner W. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Molecular Biology of the Cell. PMID 28148647 DOI: 10.1091/mbc.E16-10-0743  0.525
2017 Song H, Orr A, Duan M, Merz AJ, Wickner W. Author response: Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes Elife. DOI: 10.7554/Elife.26646.029  0.682
2016 Zick M, Wickner W. Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement. Molecular Biology of the Cell. PMID 27385334 DOI: 10.1091/mbc.E16-04-0230  0.546
2015 Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science (New York, N.Y.). 349: 1111-4. PMID 26339030 DOI: 10.1126/Science.Aac7906  0.462
2015 Zick M, Stroupe C, Orr A, Douville D, Wickner WT. Correction: Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. Elife. 4. PMID 26012539 DOI: 10.7554/eLife.08843  0.411
2015 Zick M, Orr A, Schwartz ML, Merz AJ, Wickner WT. Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18. Proceedings of the National Academy of Sciences of the United States of America. 112: E2290-7. PMID 25902545 DOI: 10.1073/Pnas.1506409112  0.796
2015 Orr A, Wickner W, Rusin SF, Kettenbach AN, Zick M. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Molecular Biology of the Cell. 26: 305-15. PMID 25411340 DOI: 10.1091/mbc.E14-08-1298  0.514
2014 Zick M, Wickner WT. A distinct tethering step is vital for vacuole membrane fusion. Elife. 3: e03251. PMID 25255215 DOI: 10.7554/eLife.03251  0.453
2014 Zick M, Stroupe C, Orr A, Douville D, Wickner WT. Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. Elife. 3: e01879. PMID 24596153 DOI: 10.7554/eLife.01879  0.455
2013 Zick M, Wickner W. The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Molecular Biology of the Cell. 24: 3746-53. PMID 24088569 DOI: 10.1091/mbc.E13-07-0419  0.58
2013 Karunakaran V, Wickner W. Fusion proteins and select lipids cooperate as membrane receptors for the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vam7p. The Journal of Biological Chemistry. 288: 28557-66. PMID 23955338 DOI: 10.1074/Jbc.M113.484410  0.761
2012 Xu H, Wickner WT. N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proceedings of the National Academy of Sciences of the United States of America. 109: 17936-41. PMID 23071309 DOI: 10.1073/pnas.1216201109  0.314
2012 Zick M, Wickner W. Phosphorylation of the effector complex HOPS by the vacuolar kinase Yck3p confers Rab nucleotide specificity for vacuole docking and fusion. Molecular Biology of the Cell. 23: 3429-37. PMID 22787280 DOI: 10.1091/mbc.E12-04-0279  0.485
2011 Xu H, Zick M, Wickner WT, Jun Y. A lipid-anchored SNARE supports membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 108: 17325-30. PMID 21987819 DOI: 10.1073/pnas.1113888108  0.45
2010 Xu H, Wickner W. Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly. The Journal of Biological Chemistry. 285: 39359-65. PMID 20937838 DOI: 10.1074/jbc.M110.183111  0.428
2010 Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annual Review of Cell and Developmental Biology. 26: 115-36. PMID 20521906 DOI: 10.1146/annurev-cellbio-100109-104131  0.568
2010 Xu H, Jun Y, Thompson J, Yates J, Wickner W. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. The Embo Journal. 29: 1948-60. PMID 20473271 DOI: 10.1038/Emboj.2010.97  0.545
2010 Hickey CM, Wickner W. HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. Molecular Biology of the Cell. 21: 2297-305. PMID 20462954 DOI: 10.1091/Mbc.E10-01-0044  0.792
2009 Stroupe C, Hickey CM, Mima J, Burfeind AS, Wickner W. Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proceedings of the National Academy of Sciences of the United States of America. 106: 17626-33. PMID 19826089 DOI: 10.1073/Pnas.0903801106  0.8
2009 Mima J, Wickner W. Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 106: 16191-6. PMID 19805279 DOI: 10.1073/pnas.0908694106  0.455
2009 Mima J, Wickner W. Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. The Journal of Biological Chemistry. 284: 27114-22. PMID 19654322 DOI: 10.1074/jbc.M109.010223  0.484
2009 Hickey CM, Stroupe C, Wickner W. The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. The Journal of Biological Chemistry. 284: 16118-25. PMID 19386605 DOI: 10.1074/Jbc.M109.000737  0.793
2008 Mima J, Hickey CM, Xu H, Jun Y, Wickner W. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. The Embo Journal. 27: 2031-42. PMID 18650938 DOI: 10.1038/Emboj.2008.139  0.755
2008 Wickner W, Schekman R. Membrane fusion. Nature Structural & Molecular Biology. 15: 658-64. PMID 18618939 DOI: 10.1038/nsmb.1451  0.671
2008 Starai VJ, Hickey CM, Wickner W. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Molecular Biology of the Cell. 19: 2500-8. PMID 18385512 DOI: 10.1091/Mbc.E08-01-0077  0.748
2007 Jun Y, Xu H, Thorngren N, Wickner W. Sec18p and Vam7p remodel trans-SNARE complexes to permit a lipid-anchored R-SNARE to support yeast vacuole fusion. The Embo Journal. 26: 4935-45. PMID 18007597 DOI: 10.1038/sj.emboj.7601915  0.547
2007 Starai VJ, Jun Y, Wickner W. Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proceedings of the National Academy of Sciences of the United States of America. 104: 13551-8. PMID 17699614 DOI: 10.1073/pnas.0704741104  0.564
2007 Jun Y, Wickner W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proceedings of the National Academy of Sciences of the United States of America. 104: 13010-5. PMID 17664431 DOI: 10.1073/pnas.0700970104  0.476
2007 Collins KM, Wickner WT. Trans-SNARE complex assembly and yeast vacuole membrane fusion. Proceedings of the National Academy of Sciences of the United States of America. 104: 8755-60. PMID 17502611 DOI: 10.1073/Pnas.0702290104  0.697
2007 Fratti RA, Collins KM, Hickey CM, Wickner W. Stringent 3Q.1R composition of the SNARE 0-layer can be bypassed for fusion by compensatory SNARE mutation or by lipid bilayer modification. The Journal of Biological Chemistry. 282: 14861-7. PMID 17400548 DOI: 10.1074/Jbc.M700971200  0.804
2007 Fratti RA, Wickner W. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. The Journal of Biological Chemistry. 282: 13133-8. PMID 17347148 DOI: 10.1074/Jbc.M700584200  0.742
2006 Jun Y, Thorngren N, Starai VJ, Fratti RA, Collins K, Wickner W. Reversible, cooperative reactions of yeast vacuole docking. The Embo Journal. 25: 5260-9. PMID 17082764 DOI: 10.1038/Sj.Emboj.7601413  0.813
2006 Xu H, Wickner W. Bem1p is a positive regulator of the homotypic fusion of yeast vacuoles. The Journal of Biological Chemistry. 281: 27158-66. PMID 16854988 DOI: 10.1074/jbc.M605592200  0.428
2006 Stroupe C, Collins KM, Fratti RA, Wickner W. Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. The Embo Journal. 25: 1579-89. PMID 16601699 DOI: 10.1038/Sj.Emboj.7601051  0.805
2006 Decker BL, Wickner WT. Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. The Journal of Biological Chemistry. 281: 14523-8. PMID 16565073 DOI: 10.1074/jbc.M600911200  0.446
2005 Wickner W, Schekman R. Protein translocation across biological membranes. Science (New York, N.Y.). 310: 1452-6. PMID 16322447 DOI: 10.1126/Science.1113752  0.65
2005 Collins KM, Thorngren NL, Fratti RA, Wickner WT. Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. The Embo Journal. 24: 1775-86. PMID 15889152 DOI: 10.1038/Sj.Emboj.7600658  0.799
2005 Starai VJ, Thorngren N, Fratti RA, Wickner W. Ion regulation of homotypic vacuole fusion in Saccharomyces cerevisiae. The Journal of Biological Chemistry. 280: 16754-62. PMID 15737991 DOI: 10.1074/Jbc.M500421200  0.726
2004 Fratti RA, Jun Y, Merz AJ, Margolis N, Wickner W. Interdependent assembly of specific regulatory lipids and membrane fusion proteins into the vertex ring domain of docked vacuoles. The Journal of Cell Biology. 167: 1087-98. PMID 15611334 DOI: 10.1083/Jcb.200409068  0.823
2004 Jun Y, Fratti RA, Wickner W. Diacylglycerol and its formation by phospholipase C regulate Rab- and SNARE-dependent yeast vacuole fusion. The Journal of Biological Chemistry. 279: 53186-95. PMID 15485855 DOI: 10.1074/Jbc.M411363200  0.764
2004 Merz AJ, Wickner WT. Resolution of organelle docking and fusion kinetics in a cell-free assay. Proceedings of the National Academy of Sciences of the United States of America. 101: 11548-53. PMID 15286284 DOI: 10.1073/Pnas.0404583101  0.611
2004 Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. The Embo Journal. 23: 2765-76. PMID 15241469 DOI: 10.1038/Sj.Emboj.7600286  0.832
2004 Merz AJ, Wickner WT. Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. The Journal of Cell Biology. 164: 195-206. PMID 14734531 DOI: 10.1083/Jcb.200310105  0.532
2003 Kato M, Wickner W. Vam10p defines a Sec18p-independent step of priming that allows yeast vacuole tethering. Proceedings of the National Academy of Sciences of the United States of America. 100: 6398-403. PMID 12748377 DOI: 10.1073/pnas.1132162100  0.366
2003 Wang L, Merz AJ, Collins KM, Wickner W. Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. The Journal of Cell Biology. 160: 365-74. PMID 12566429 DOI: 10.1083/Jcb.200209095  0.785
2002 Eitzen G, Wang L, Thorngren N, Wickner W. Remodeling of organelle-bound actin is required for yeast vacuole fusion. The Journal of Cell Biology. 158: 669-79. PMID 12177043 DOI: 10.1083/Jcb.200204089  0.508
2002 Seeley ES, Kato M, Margolis N, Wickner W, Eitzen G. Genomic analysis of homotypic vacuole fusion. Molecular Biology of the Cell. 13: 782-94. PMID 11907261 DOI: 10.1091/mbc.01-10-0512  0.417
2002 Wickner W. Yeast vacuoles and membrane fusion pathways. The Embo Journal. 21: 1241-7. PMID 11889030 DOI: 10.1093/emboj/21.6.1241  0.488
2002 Wang L, Seeley ES, Wickner W, Merz AJ. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell. 108: 357-69. PMID 11853670 DOI: 10.1016/S0092-8674(02)00632-3  0.745
2001 Eitzen G, Thorngren N, Wickner W. Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking. The Embo Journal. 20: 5650-6. PMID 11598008 DOI: 10.1093/emboj/20.20.5650  0.487
2001 Kato M, Wickner W. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. The Embo Journal. 20: 4035-40. PMID 11483507 DOI: 10.1093/emboj/20.15.4035  0.479
2001 Yahr TL, Wickner WT. Functional reconstitution of bacterial Tat translocation in vitro. The Embo Journal. 20: 2472-9. PMID 11350936 DOI: 10.1093/Emboj/20.10.2472  0.741
2000 Eitzen G, Will E, Gallwitz D, Haas A, Wickner W. Sequential action of two GTPases to promote vacuole docking and fusion. The Embo Journal. 19: 6713-20. PMID 11118206 DOI: 10.1093/emboj/19.24.6713  0.414
2000 Wickner W, Haas A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annual Review of Biochemistry. 69: 247-75. PMID 10966459 DOI: 10.1146/annurev.biochem.69.1.247  0.604
2000 Seals DF, Eitzen G, Margolis N, Wickner WT, Price A. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proceedings of the National Academy of Sciences of the United States of America. 97: 9402-7. PMID 10944212  0.368
2000 Yahr TL, Wickner WT. Evaluating the oligomeric state of SecYEG in preprotein translocase. The Embo Journal. 19: 4393-401. PMID 10944122 DOI: 10.1093/Emboj/19.16.4393  0.681
2000 Ungermann C, Price A, Wickner W. A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proceedings of the National Academy of Sciences of the United States of America. 97: 8889-91. PMID 10908678 DOI: 10.1073/Pnas.160269997  0.657
2000 Wang L, Ungermann C, Wickner W. The docking of primed vacuoles can be reversibly arrested by excess Sec17p (alpha-SNAP). The Journal of Biological Chemistry. 275: 22862-7. PMID 10816559 DOI: 10.1074/Jbc.M001447200  0.705
2000 Price A, Seals D, Wickner W, Ungermann C. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. The Journal of Cell Biology. 148: 1231-8. PMID 10725336 DOI: 10.1083/Jcb.148.6.1231  0.65
2000 Price A, Wickner W, Ungermann C. Proteins needed for vesicle budding from the Golgi complex are also required for the docking step of homotypic vacuole fusion. The Journal of Cell Biology. 148: 1223-29. PMID 10725335 DOI: 10.1083/Jcb.148.6.1223  0.722
2000 Mayer A, Scheglmann D, Dove S, Glatz A, Wickner W, Haas A. Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Molecular Biology of the Cell. 11: 807-17. PMID 10712501 DOI: 10.1091/Mbc.11.3.807  0.375
1999 Ungermann C, Wickner W, Xu Z. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proceedings of the National Academy of Sciences of the United States of America. 96: 11194-9. PMID 10500153 DOI: 10.1073/Pnas.96.20.11194  0.618
1999 Ungermann C, von Mollard GF, Jensen ON, Margolis N, Stevens TH, Wickner W. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. The Journal of Cell Biology. 145: 1435-42. PMID 10385523 DOI: 10.1083/Jcb.145.7.1435  0.624
1999 Duong F, Wickner W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. The Embo Journal. 18: 3263-70. PMID 10369667 DOI: 10.1093/emboj/18.12.3263  0.388
1998 Ungermann C, Sato K, Wickner W. Defining the functions of trans-SNARE pairs. Nature. 396: 543-8. PMID 9859990 DOI: 10.1038/25069  0.702
1998 Eichler J, Wickner W. The SecA subunit of Escherichia coli preprotein translocase is exposed to the periplasm. Journal of Bacteriology. 180: 5776-9. PMID 9791133 DOI: 10.1128/Jb.180.21.5776-5779.1998  0.522
1998 Eichler J, Rinard K, Wickner W. Endogenous SecA catalyzes preprotein translocation at SecYEG. The Journal of Biological Chemistry. 273: 21675-81. PMID 9705302 DOI: 10.1074/jbc.273.34.21675  0.513
1998 Sato K, Wickner W. Functional reconstitution of ypt7p GTPase and a purified vacuole SNARE complex. Science (New York, N.Y.). 281: 700-2. PMID 9685264 DOI: 10.1126/Science.281.5377.700  0.541
1998 Xu Z, Sato K, Wickner W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell. 93: 1125-34. PMID 9657146 DOI: 10.1016/S0092-8674(00)81457-9  0.392
1998 Ungermann C, Wickner W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. The Embo Journal. 17: 3269-76. PMID 9628864 DOI: 10.1093/Emboj/17.12.3269  0.694
1998 Duong F, Wickner W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. The Embo Journal. 17: 696-705. PMID 9450995 DOI: 10.1093/emboj/17.3.696  0.571
1998 Ungermann C, Nichols BJ, Pelham HR, Wickner W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. The Journal of Cell Biology. 140: 61-9. PMID 9425154 DOI: 10.1083/Jcb.140.1.61  0.621
1997 Duong F, Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. The Embo Journal. 16: 4871-9. PMID 9305629 DOI: 10.1093/emboj/16.16.4871  0.507
1997 Duong F, Wickner W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. The Embo Journal. 16: 2756-68. PMID 9184221 DOI: 10.1093/emboj/16.10.2756  0.579
1997 Eichler J, Brunner J, Wickner W. The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase. The Embo Journal. 16: 2188-96. PMID 9171334 DOI: 10.1093/emboj/16.9.2188  0.523
1997 Eichler J, Wickner W. Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proceedings of the National Academy of Sciences of the United States of America. 94: 5574-81. PMID 9159114 DOI: 10.1073/pnas.94.11.5574  0.529
1997 Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature. 387: 199-202. PMID 9144293 DOI: 10.1038/387199A0  0.686
1997 Mayer A, Wickner W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). The Journal of Cell Biology. 136: 307-17. PMID 9015302 DOI: 10.1083/jcb.136.2.307  0.399
1997 Xu Z, Mayer A, Muller E, Wickner W. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. The Journal of Cell Biology. 136: 299-306. PMID 9015301 DOI: 10.1083/jcb.136.2.299  0.454
1996 Price A, Economou A, Duong F, Wickner W. Separable ATPase and membrane insertion domains of the SecA subunit of preprotein translocase. The Journal of Biological Chemistry. 271: 31580-4. PMID 8940175 DOI: 10.1074/jbc.271.49.31580  0.508
1996 Nicolson T, Conradt B, Wickner W. A truncated form of the Pho80 cyclin of Saccharomyces cerevisiae induces expression of a small cytosolic factor which inhibits vacuole inheritance. Journal of Bacteriology. 178: 4047-51. PMID 8763930 DOI: 10.1128/Jb.178.14.4047-4051.1996  0.785
1996 Haas A, Wickner W. Homotypic vacuole fusion requires Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF). The Embo Journal. 15: 3296-305. PMID 8670830 DOI: 10.1002/J.1460-2075.1996.Tb00694.X  0.505
1996 Mayer A, Wickner W, Haas A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell. 85: 83-94. PMID 8620540 DOI: 10.1016/S0092-8674(00)81084-3  0.46
1996 Xu Z, Wickner W. Thioredoxin is required for vacuole inheritance in Saccharomyces cerevisiae. The Journal of Cell Biology. 132: 787-94. PMID 8603912 DOI: 10.1083/jcb.132.5.787  0.397
1995 Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell. 83: 1171-81. PMID 8548804 DOI: 10.1016/0092-8674(95)90143-4  0.487
1995 Douville K, Price A, Eichler J, Economou A, Wickner W. SecYEG and SecA are the stoichiometric components of preprotein translocase. The Journal of Biological Chemistry. 270: 20106-11. PMID 7650029 DOI: 10.1074/jbc.270.34.20106  0.554
1995 Nicolson TA, Weisman LS, Payne GS, Wickner WT. A truncated form of the Pho80 cyclin redirects the Pho85 kinase to disrupt vacuole inheritance in S. cerevisiae. The Journal of Cell Biology. 130: 835-45. PMID 7642701 DOI: 10.1083/Jcb.130.4.835  0.702
1995 Wickner W. The nascent-polypeptide-associated complex: having a "NAC" for fidelity in translocation. Proceedings of the National Academy of Sciences of the United States of America. 92: 9433-4. PMID 7568148 DOI: 10.1073/pnas.92.21.9433  0.343
1995 Haas A, Scheglmann D, Lazar T, Gallwitz D, Wickner W. The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. The Embo Journal. 14: 5258-70. PMID 7489715 DOI: 10.1002/J.1460-2075.1995.Tb00210.X  0.427
1994 Joly JC, Leonard MR, Wickner WT. Subunit dynamics in Escherichia coli preprotein translocase. Proceedings of the National Academy of Sciences of the United States of America. 91: 4703-7. PMID 8197122 DOI: 10.1073/pnas.91.11.4703  0.305
1994 Arkowitz RA, Wickner W. SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. The Embo Journal. 13: 954-63. PMID 8112309 DOI: 10.1002/J.1460-2075.1994.Tb06340.X  0.711
1994 Economou A, Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell. 78: 835-43. PMID 8087850 DOI: 10.1016/S0092-8674(94)90582-7  0.538
1994 Douville K, Leonard M, Brundage L, Nishiyama K, Tokuda H, Mizushima S, Wickner W. Band 1 subunit of Escherichia coli preportein translocase and integral membrane export factor P12 are the same protein. The Journal of Biological Chemistry. 269: 18705-7. PMID 8034620  0.39
1994 Conradt B, Haas A, Wickner W. Determination of four biochemically distinct, sequential stages during vacuole inheritance in vitro. The Journal of Cell Biology. 126: 99-110. PMID 8027190 DOI: 10.1083/Jcb.126.1.99  0.66
1994 Haas A, Conradt B, Wickner W. G-protein ligands inhibit in vitro reactions of vacuole inheritance. The Journal of Cell Biology. 126: 87-97. PMID 8027189 DOI: 10.1083/Jcb.126.1.87  0.758
1994 Wickner WT. How ATP drives proteins across membranes. Science (New York, N.Y.). 266: 1197-8. PMID 7973701  0.451
1993 Bassilana M, Wickner W. Purified Escherichia coli preprotein translocase catalyzes multiple cycles of precursor protein translocation. Biochemistry. 32: 2626-30. PMID 8448119 DOI: 10.1021/Bi00061A021  0.567
1993 Joly JC, Wickner W. The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. The Embo Journal. 12: 255-63. PMID 8428583 DOI: 10.1002/J.1460-2075.1993.Tb05651.X  0.509
1993 Arkowitz RA, Joly JC, Wickner W. Translocation can drive the unfolding of a preprotein domain. The Embo Journal. 12: 243-53. PMID 8428582 DOI: 10.1002/J.1460-2075.1993.Tb05650.X  0.763
1992 Weisman LS, Wickner W. Molecular characterization of VAC1, a gene required for vacuole inheritance and vacuole protein sorting. The Journal of Biological Chemistry. 267: 618-23. PMID 1730622  0.581
1992 Schiebel E, Wickner W. Preprotein translocation creates a halide anion permeability in the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 267: 7505-10. PMID 1559988  0.691
1992 Brundage L, Fimmel CJ, Mizushima S, Wickner W. SecY, SecE, and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. The Journal of Biological Chemistry. 267: 4166-70. PMID 1531482  0.372
1992 Bassilana M, Arkowitz RA, Wickner W. The role of the mature domain of proOmpA in the translocation ATPase reaction. The Journal of Biological Chemistry. 267: 25246-50. PMID 1460025  0.688
1992 Conradt B, Shaw J, Vida T, Emr S, Wickner W. In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. The Journal of Cell Biology. 119: 1469-79. PMID 1334958 DOI: 10.1083/Jcb.119.6.1469  0.769
1991 Shaw JM, Wickner WT. vac2: a yeast mutant which distinguishes vacuole segregation from Golgi-to-vacuole protein targeting. The Embo Journal. 10: 1741-8. PMID 2050111  0.518
1991 Hendrick JP, Wickner W. SecA protein needs both acidic phospholipids and SecY/E protein for functional high-affinity binding to the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 266: 24596-600. PMID 1837025  0.495
1991 Driessen AJ, Brundage L, Hendrick JP, Schiebel E, Wickner W. Preprotein translocase of Escherichia coli: solubilization, purification, and reconstitution of the integral membrane subunits SecY/E. Methods in Cell Biology. 34: 147-65. PMID 1834920 DOI: 10.1016/S0091-679X(08)61679-9  0.673
1991 Wickner W, Driessen AJ, Hartl FU. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annual Review of Biochemistry. 60: 101-24. PMID 1831965 DOI: 10.1146/Annurev.Bi.60.070191.000533  0.781
1991 Driessen AJ, Wickner W. Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Proceedings of the National Academy of Sciences of the United States of America. 88: 2471-5. PMID 1826054 DOI: 10.1073/Pnas.88.6.2471  0.398
1991 Schiebel E, Driessen AJ, Hartl FU, Wickner W. Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell. 64: 927-39. PMID 1825804 DOI: 10.1016/0092-8674(91)90317-R  0.76
1990 Guthrie B, Wickner W. Trigger factor depletion or overproduction causes defective cell division but does not block protein export. Journal of Bacteriology. 172: 5555-62. PMID 2211496 DOI: 10.1128/Jb.172.10.5555-5562.1990  0.382
1990 Lecker SH, Driessen AJ, Wickner W. ProOmpA contains secondary and tertiary structure prior to translocation and is shielded from aggregation by association with SecB protein. The Embo Journal. 9: 2309-14. PMID 2192862 DOI: 10.1002/J.1460-2075.1990.Tb07402.X  0.482
1990 Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell. 63: 269-79. PMID 2170023 DOI: 10.1016/0092-8674(90)90160-G  0.801
1990 Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell. 62: 649-57. PMID 2167176 DOI: 10.1016/0092-8674(90)90111-Q  0.705
1990 Lill R, Dowhan W, Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell. 60: 271-80. PMID 2153463 DOI: 10.1016/0092-8674(90)90742-W  0.703
1990 Driessen AJ, Wickner W. Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 87: 3107-11. PMID 2139227 DOI: 10.1073/Pnas.87.8.3107  0.524
1990 Weisman LS, Emr SD, Wickner WT. Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proceedings of the National Academy of Sciences of the United States of America. 87: 1076-80. PMID 1689059 DOI: 10.1073/Pnas.87.3.1076  0.55
1989 Wickner W. Secretion and membrane assembly. Trends in Biochemical Sciences. 14: 280-3. PMID 2672449 DOI: 10.1016/0968-0004(89)90064-9  0.548
1989 Cunningham K, Wickner WT. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity. Proceedings of the National Academy of Sciences of the United States of America. 86: 8673-7. PMID 2554324 DOI: 10.1073/Pnas.86.22.8673  0.484
1989 Cunningham K, Wickner W. Specific recognition of the leader region of precursor proteins is required for the activation of translocation ATPase of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 86: 8630-4. PMID 2554321 DOI: 10.1073/Pnas.86.22.8630  0.481
1989 San Millan JL, Boyd D, Dalbey R, Wickner W, Beckwith J. Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase. Journal of Bacteriology. 171: 5536-41. PMID 2551889 DOI: 10.1128/jb.171.10.5536-5541.1989  0.715
1989 Lill R, Cunningham K, Brundage LA, Ito K, Oliver D, Wickner W. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. The Embo Journal. 8: 961-6. PMID 2542029 DOI: 10.1002/J.1460-2075.1989.Tb03458.X  0.712
1989 Cunningham K, Lill R, Crooke E, Rice M, Moore K, Wickner W, Oliver D. SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA. The Embo Journal. 8: 955-9. PMID 2542028 DOI: 10.1002/J.1460-2075.1989.Tb03457.X  0.71
1989 Lecker S, Lill R, Ziegelhoffer T, Georgopoulos C, Bassford PJ, Kumamoto CA, Wickner W. Three pure chaperone proteins of Escherichia coli--SecB, trigger factor and GroEL--form soluble complexes with precursor proteins in vitro. The Embo Journal. 8: 2703-9. PMID 2531087  0.614
1988 von Heijne G, Wickner W, Dalbey RE. The cytoplasmic domain of Escherichia coli leader peptidase is a "translocation poison" sequence. Proceedings of the National Academy of Sciences of the United States of America. 85: 3363-6. PMID 3285342 DOI: 10.1073/Pnas.85.10.3363  0.733
1988 Wickner W. Mechanisms of membrane assembly: general lessons from the study of M13 coat protein and Escherichia coli leader peptidase. Biochemistry. 27: 1081-6. PMID 3284576 DOI: 10.1021/Bi00404A001  0.487
1988 Dalbey RE, Wickner W. Characterization of the internal signal-anchor domain of Escherichia coli leader peptidase. The Journal of Biological Chemistry. 263: 404-8. PMID 3275645  0.605
1988 Crooke E, Brundage L, Rice M, Wickner W. ProOmpA spontaneously folds in a membrane assembly competent state which trigger factor stabilizes. The Embo Journal. 7: 1831-5. PMID 3049077 DOI: 10.1002/J.1460-2075.1988.Tb03015.X  0.544
1988 Lill R, Crooke E, Guthrie B, Wickner W. The "trigger factor cycle" includes ribosomes, presecretory proteins, and the plasma membrane. Cell. 54: 1013-8. PMID 3046750 DOI: 10.1016/0092-8674(88)90116-X  0.711
1988 Moore KE, Dalbey RE, Wickner W. In vitro insertion of leader peptidase into Escherichia coli membrane vesicles. Journal of Bacteriology. 170: 4395-8. PMID 3045096 DOI: 10.1128/Jb.170.9.4395-4398.1988  0.749
1988 Weisman LS, Wickner W. Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science (New York, N.Y.). 241: 589-91. PMID 3041591 DOI: 10.1126/Science.3041591  0.608
1988 Crooke E, Guthrie B, Lecker S, Lill R, Wickner W. ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle. Cell. 54: 1003-11. PMID 2843289 DOI: 10.1016/0092-8674(88)90115-8  0.682
1987 Dalbey RE, Wickner W. Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly. Science (New York, N.Y.). 235: 783-7. PMID 3544218  0.671
1987 Dalbey RE, Kuhn A, Wickner W. The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly. The Journal of Biological Chemistry. 262: 13241-5. PMID 3308874  0.654
1987 Crooke E, Wickner W. Trigger factor: a soluble protein that folds pro-OmpA into a membrane-assembly-competent form. Proceedings of the National Academy of Sciences of the United States of America. 84: 5216-20. PMID 3299381 DOI: 10.1073/Pnas.84.15.5216  0.53
1987 Kuhn A, Kreil G, Wickner W. Recombinant forms of M13 procoat with an OmpA leader sequence or a large carboxy-terminal extension retain their independence of secY function. The Embo Journal. 6: 501-5. PMID 3034592 DOI: 10.1002/J.1460-2075.1987.Tb04781.X  0.572
1987 Weisman LS, Bacallao R, Wickner W. Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. The Journal of Cell Biology. 105: 1539-47. PMID 2444598 DOI: 10.1083/Jcb.105.4.1539  0.593
1986 Kuhn A, Kreil G, Wickner W. Both hydrophobic domains of M13 procoat are required to initiate membrane insertion. The Embo Journal. 5: 3681-5. PMID 3549284 DOI: 10.1002/J.1460-2075.1986.Tb04699.X  0.553
1986 Dalbey RE, Wickner W. The role of the polar, carboxyl-terminal domain of Escherichia coli leader peptidase in its translocation across the plasma membrane. The Journal of Biological Chemistry. 261: 13844-9. PMID 3531212  0.673
1986 Kuhn A, Wickner W, Kreil G. The cytoplasmic carboxy terminus of M13 procoat is required for the membrane insertion of its central domain. Nature. 322: 335-9. PMID 3526160 DOI: 10.1038/322335a0  0.524
1986 Dierstein R, Wickner W. Requirements for substrate recognition by bacterial leader peptidase. The Embo Journal. 5: 427-31. PMID 3519209 DOI: 10.1002/J.1460-2075.1986.Tb04228.X  0.436
1986 Bacallao R, Crooke E, Shiba K, Wickner W, Ito K. The secY protein can act post-translationally to promote bacterial protein export. The Journal of Biological Chemistry. 261: 12907-10. PMID 3017993  0.39
1986 Geller BL, Movva NR, Wickner W. Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America. 83: 4219-22. PMID 2872675 DOI: 10.1073/Pnas.83.12.4219  0.535
1985 Kuhn A, Wickner W. Isolation of mutants in M13 coat protein that affect its synthesis, processing, and assembly into phage. The Journal of Biological Chemistry. 260: 15907-13. PMID 4066698  0.323
1985 Wickner WT, Lodish HF. Multiple mechanisms of protein insertion into and across membranes. Science (New York, N.Y.). 230: 400-7. PMID 4048938 DOI: 10.1126/Science.4048938  0.458
1985 Dierstein R, Wickner W. The leader region of pre-maltose binding protein binds amphiphiles. A model for self-assembly in protein export. The Journal of Biological Chemistry. 260: 15919-24. PMID 3905799  0.307
1985 Kuhn A, Wickner W. Conserved residues of the leader peptide are essential for cleavage by leader peptidase. The Journal of Biological Chemistry. 260: 15914-8. PMID 3905798  0.333
1985 Geller BL, Wickner W. M13 procoat inserts into liposomes in the absence of other membrane proteins. The Journal of Biological Chemistry. 260: 13281-5. PMID 3902814  0.507
1985 Wolfe PB, Rice M, Wickner W. Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. The Journal of Biological Chemistry. 260: 1836-41. PMID 3881443  0.464
1985 Dalbey RE, Wickner W. Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. The Journal of Biological Chemistry. 260: 15925-31. PMID 2999144  0.71
1985 Geller BL, Wickner W. Coliphage M13 procoat translocates through a lipid bilayer without the use of other membrane-bound or soluble proteins Federation Proceedings. 44: No. 446.  0.398
1984 Ohno-Iwashita Y, Wolfe P, Ito K, Wickner W. Processing of preproteins by liposomes bearing leader peptidase Biochemistry. 23: 6178-6184. PMID 6395892 DOI: 10.1021/Bi00320A044  0.553
1984 Wolfe PB, Wickner W. Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway as pre-secretory proteins Cell. 36: 1067-1072. PMID 6368003 DOI: 10.1016/0092-8674(84)90056-4  0.565
1983 Wickner W, Sudate T, Zimmermann R, Ito K. [5] Pulse-labeling studies of membrane assembly and protein secretion in intact cells: M13 coat protein Methods in Enzymology. 97: 57-61. PMID 6361482 DOI: 10.1016/0076-6879(83)97118-5  0.356
1983 Wolfe PB, Zwizinski C, Wickner W. (3] Purification and characterization of leader peptidase from Escherichia coli Methods in Enzymology. 97: 40-46. PMID 6361480 DOI: 10.1016/0076-6879(83)97116-1  0.548
1983 Watts C, Goodman JM, Silver P, Wickner W. Analysis of M13 procoat assembly into membranes in vitro. Methods in Enzymology. 97: 130-8. PMID 6361469 DOI: 10.1016/0076-6879(83)97126-4  0.776
1983 Watts C, Wickner W, Zimmermann R. M13 procoat and a pre-immunoglobulin share processing specificity but use different membrane receptor mechanisms Proceedings of the National Academy of Sciences of the United States of America. 80: 2809-2813. PMID 6344069 DOI: 10.1073/Pnas.80.10.2809  0.442
1983 Silver P, Wickner W. Genetic mapping of the Escherichia coli leader (signal) peptidase gene (lep): A new approach for determining the map position of a cloned gene Journal of Bacteriology. 154: 569-572. PMID 6341355  0.408
1983 Zimmermann R, Wickner W. Energetics and intermediates of the assembly of protein OmpA into the outer membrane of Escherichia coli Journal of Biological Chemistry. 258: 3920-3925. PMID 6339491  0.457
1983 Ohno Iwashita Y, Wickner W. Reconstriction of rapid and asymmetric assembly of M13 procoat protein into liposomes which have bacterial leader peptidase Journal of Biological Chemistry. 258: 1895-1900. PMID 6337146  0.43
1983 Sudate T, Silver P, Wickner W. [4] Molecular genetics of Escherichia coli leader peptidase Methods in Enzymology. 97: 46-57. PMID 6318034 DOI: 10.1016/0076-6879(83)97117-3  0.613
1983 Wolfe PB, Wickner W, Goodman JM. Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. The Journal of Biological Chemistry. 258: 12073-80. PMID 6311837  0.638
1983 Wickner W. M13 coat protein as a model of membrane assembly Trends in Biochemical Sciences. 8: 90-94. DOI: 10.1016/0968-0004(83)90257-8  0.559
1982 Zimmermann R, Watts C, Wickner W. The biosynthesis of membrane-bound M13 coat protein. Energetics and assembly intermediates Journal of Biological Chemistry. 257: 6529-6536. PMID 7042715  0.345
1982 Zwizinski C, Wickner W. The purification of M13 procoat, a membrane protein precursor Embo Journal. 1: 573-578. PMID 6765231 DOI: 10.1002/J.1460-2075.1982.Tb01210.X  0.451
1982 Wolfe PB, Silver P, Wickner W. The isolation of homogeneous leader peptidase from a strain of Escherichia coli which overproduces the enzyme Journal of Biological Chemistry. 257: 7898-7902. PMID 6282859  0.534
1981 Goodman JM, Watts C, Wickner W. Membrane assembly: posttranslational insertion of M13 procoat protein into E. coli membranes and its proteolytic conversion to coat protein in vitro. Cell. 24: 437-41. PMID 7237555 DOI: 10.1016/0092-8674(81)90334-2  0.729
1981 Watts C, Silver P, Wickner W. Membrane assembly from purified components. II. Assembly of M13 procoat into liposomes reconstituted with purified leader peptidase Cell. 25: 347-353. PMID 7026043 DOI: 10.1016/0092-8674(81)90053-2  0.691
1981 Silver P, Watts C, Wickner W. Membrane assembly from purified components. I. Isolated M13 procoat does not require ribosomes or soluble proteins for processing by membranes Cell. 25: 341-345. PMID 7026042 DOI: 10.1016/0092-8674(81)90052-0  0.675
1981 Date T, Wickner WT. Procoat, the precursor of M13 coat protein, inserts post-translationally into the membrane of cells infected by wild-type virus Journal of Virology. 37: 1087-1089. PMID 7014926  0.351
1981 Zwizinski C, Date T, Wickner W. Leader peptidase is found in both the inner and outer membranes of Escherichia coli Journal of Biological Chemistry. 256: 3593-3597. PMID 7009614  0.433
1981 Date T, Wickner W. Isolation of the Escherichia coli leader peptidase gene and effects of leader peptidase overproduction in vivo Proceedings of the National Academy of Sciences of the United States of America. 78: 6106-6110. PMID 6273848  0.395
1980 Silver P, Wickner WT. Role of M13 gene 1 protein in filamentous virus assembly Journal of Virology. 35: 256-258. PMID 7411692 DOI: 10.1128/Jvi.35.1.256-258.1980  0.475
1980 Wickner W. Assembly of proteins into membranes Science. 210: 861-868. PMID 7001628 DOI: 10.1126/Science.7001628  0.556
1980 Date T, Goodman JM, Wickner WT. Procoat, the precursor of M13 coat protein, requires an electrochemical potential for membrane insertion. Proceedings of the National Academy of Sciences of the United States of America. 77: 4669-73. PMID 7001463 DOI: 10.1073/Pnas.77.8.4669  0.687
1980 Zwizinski C, Wickner W. Purification and characterization of leader (signal) peptidase from Escherichia coli Journal of Biological Chemistry. 255: 7973-7977. PMID 6995457  0.409
1980 Wickner W, Ito K, Mandel G, Bates M, Nokelainen M, Zwizinski C. The three lives of M13 coat protein: a virion capsid, an integral membrane protein, and a soluble cytoplasmic proprotein. Annals of the New York Academy of Sciences. 343: 384-90. PMID 6994558 DOI: 10.1111/J.1749-6632.1980.Tb47267.X  0.672
1980 Ito K, Date T, Wickner W. Synthesis, assembly into the cytoplasmic membrane, and proteolytic processing of the precursor of coliphage M13 coat protein Journal of Biological Chemistry. 255: 2123-2130. PMID 6986388  0.382
1980 Date T, Zwizinski C, Ludmerer S, Wickner W. Mechanisms of membrane assembly: Effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein Proceedings of the National Academy of Sciences of the United States of America. 77: 827-831. PMID 6928682 DOI: 10.1073/Pnas.77.2.827  0.535
1979 Wickner W. Interactions of melittin, a preprotein model, with detergents Biochemistry. 18: 4177-4181. PMID 486416  0.366
1979 Ito K, Mandel G, Wickner W. Soluble precursor of an integral membrane protein: synthesis of procoat protein in Escherichia coli infected with bacteriophage M13. Proceedings of the National Academy of Sciences of the United States of America. 76: 1199-203. PMID 375229 DOI: 10.1073/Pnas.76.3.1199  0.697
1979 Mandel G, Wickner W. Translational and post-translational cleavage of M13 procoat protein: extracts of both the cytoplasmic and outer membranes of Escherichia coli contain leader peptidase activity. Proceedings of the National Academy of Sciences of the United States of America. 76: 236-40. PMID 370824 DOI: 10.1073/Pnas.76.1.236  0.699
1979 Wickner W. The assembly of proteins into biological membranes: The membrane trigger hypothesis Annual Review of Biochemistry. 48: 23-45. PMID 224802 DOI: 10.1146/Annurev.Bi.48.070179.000323  0.547
1978 Wickner W, Mandel G, Zwizinski C, Bates M, Killick T. Synthesis of phage M13 coat protein and its assembly into membranes in vitro. Proceedings of the National Academy of Sciences of the United States of America. 75: 1754-8. PMID 273906 DOI: 10.1073/pnas.75.4.1754  0.713
1977 Zwizinski C, Wickner W. Studies of asymmetric membrane assembly Bba - Biomembranes. 471: 169-176. PMID 921977 DOI: 10.1016/0005-2736(77)90247-4  0.529
1977 Wickner WT. Role of hydrophobic forces in membrane protein asymmetry Biochemistry. 16: 254-258. PMID 836786  0.394
1977 Wickner W, Killick T. Membrane associated assembly of M13 phage in extracts of virus infected Escherichia coli Proceedings of the National Academy of Sciences of the United States of America. 74: 505-509. PMID 15248 DOI: 10.1073/Pnas.74.2.505  0.457
1976 Wickner W. Asymmetric orientation of phage M13 coat protein in Escherichia coli cytoplasmic membranes and in synthetic lipid vesicles. Proceedings of the National Academy of Sciences of the United States of America. 73: 1159-63. PMID 772680 DOI: 10.1073/PNAS.73.4.1159  0.499
1976 Wickner W. Fractionation of membrane vesicles from coliphage M13-infected Escherichia coli. Journal of Bacteriology. 127: 162-7. PMID 132427 DOI: 10.1128/JB.127.1.162-167.1976  0.45
1976 Wickner W. Asymmetric orientation of a phage coat protein in cytoplasmic membrane of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 72: 4749-53. PMID 54916 DOI: 10.1073/PNAS.72.12.4749  0.505
1974 Wickner W, Kornberg A. A novel form of RNA polymerase from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 71: 4425-8. PMID 4612517 DOI: 10.1073/Pnas.71.11.4425  0.468
1974 Wickner W, Kornberg A. A holoenzyme form of deoxyribonucleic acid polymerase III. Isolation and properties. The Journal of Biological Chemistry. 249: 6244-9. PMID 4608499  0.393
1974 Dowhan W, Wickner WT, Kennedy EP. Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. The Journal of Biological Chemistry. 249: 3079-84. PMID 4598120  0.482
1973 Wickner W, Schekman R, Geider K, Kornberg A. A new form of DNA polymerase 3 and a copolymerase replicate a long, single-stranded primer-template. Proceedings of the National Academy of Sciences of the United States of America. 70: 1764-7. PMID 4578443 DOI: 10.1073/Pnas.70.6.1764  0.609
1973 Wickner W, Kornberg A. DNA polymerase 3 star requires ATP to start synthesis on a primed DNA. Proceedings of the National Academy of Sciences of the United States of America. 70: 3679-83. PMID 4519657 DOI: 10.1073/Pnas.70.12.3679  0.49
1972 Schekman R, Wickner W, Westergaard O, Brutlag D, Geider K, Bertsch LL, Kornberg A. Initiation of DNA synthesis: synthesis of phiX174 replicative form requires RNA synthesis resistant to rifampicin. Proceedings of the National Academy of Sciences of the United States of America. 69: 2691-5. PMID 4560696 DOI: 10.1073/Pnas.69.9.2691  0.675
1972 Wickner W, Brutlag D, Schekman R, Kornberg A. RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proceedings of the National Academy of Sciences of the United States of America. 69: 965-9. PMID 4554537 DOI: 10.1073/Pnas.69.4.965  0.689
1972 Raetz CR, Hirschberg CB, Dowhan W, Wickner WT, Kennedy EP. A membrane-bound pyrophosphatase in Escherichia coli catalyzing the hydrolysis of cytidine diphosphate-diglyceride. The Journal of Biological Chemistry. 247: 2245-7. PMID 4335869  0.737
Show low-probability matches.