Year |
Citation |
Score |
2019 |
Carroll D. Collateral damage: benchmarking off-target effects in genome editing. Genome Biology. 20: 114. PMID 31159845 DOI: 10.1186/S13059-019-1725-0 |
0.341 |
|
2018 |
Yarrington RM, Verma S, Schwartz S, Trautman JK, Carroll D. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proceedings of the National Academy of Sciences of the United States of America. PMID 30201707 DOI: 10.1073/Pnas.1810062115 |
0.422 |
|
2018 |
Carroll D. p53 Throws CRISPR a Curve. Trends in Pharmacological Sciences. PMID 30006230 DOI: 10.1016/J.Tips.2018.06.005 |
0.381 |
|
2017 |
Sarno R, Vicq Y, Uematsu N, Luka M, Lapierre C, Carroll D, Bastianelli G, Serero A, Nicolas A. Programming sites of meiotic crossovers using Spo11 fusion proteins. Nucleic Acids Research. PMID 28977556 DOI: 10.1093/Nar/Gkx739 |
0.42 |
|
2017 |
DeWitt M, Corn JE, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods (San Diego, Calif.). PMID 28410976 DOI: 10.1016/J.Ymeth.2017.04.003 |
0.406 |
|
2016 |
Carroll D. Genome editing: progress and challenges for medical applications. Genome Medicine. 8: 120. PMID 27846896 DOI: 10.1186/S13073-016-0378-9 |
0.327 |
|
2016 |
DeWitt MA, Magis W, Bray NL, Wang T, Berman JR, Urbinati F, Heo SJ, Mitros T, Muñoz DP, Boffelli D, Kohn DB, Walters MC, Carroll D, Martin DI, Corn JE. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Science Translational Medicine. 8: 360ra134. PMID 27733558 DOI: 10.1126/Scitranslmed.Aaf9336 |
0.353 |
|
2016 |
Carroll D. A Perspective on the State of Genome Editing. Molecular Therapy : the Journal of the American Society of Gene Therapy. 24: 412-3. PMID 26952917 DOI: 10.1038/Mt.2016.28 |
0.384 |
|
2015 |
Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. Journal of Molecular Biology. PMID 26506267 DOI: 10.1016/J.Jmb.2015.10.014 |
0.473 |
|
2015 |
Corrigan-Curay J, O'Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D, Sadelain M, Scharenberg AM, von Kalle C, Zhang F, Jambou R, et al. Genome editing technologies: defining a path to clinic. Molecular Therapy : the Journal of the American Society of Gene Therapy. 23: 796-806. PMID 25943494 DOI: 10.1038/Mt.2015.54 |
0.375 |
|
2015 |
Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, Greely HT, Jinek M, Martin GS, Penhoet E, Puck J, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science (New York, N.Y.). 348: 36-8. PMID 25791083 DOI: 10.1126/Science.Aab1028 |
0.33 |
|
2015 |
Carroll D. Genome editing by targeted chromosomal mutagenesis. Methods in Molecular Biology (Clifton, N.J.). 1239: 1-13. PMID 25408398 DOI: 10.1007/978-1-4939-1862-1_1 |
0.472 |
|
2014 |
Carroll D, Beumer KJ. Genome engineering with TALENs and ZFNs: repair pathways and donor design. Methods (San Diego, Calif.). 69: 137-41. PMID 24704173 DOI: 10.1016/J.Ymeth.2014.03.026 |
0.416 |
|
2014 |
Carroll D. Genome engineering with targetable nucleases. Annual Review of Biochemistry. 83: 409-39. PMID 24606144 DOI: 10.1146/Annurev-Biochem-060713-035418 |
0.503 |
|
2014 |
Carroll D. Precision genome engineering. Current Biology : Cb. 24: R102-3. PMID 24502778 DOI: 10.1016/J.Cub.2013.11.055 |
0.471 |
|
2014 |
Beumer KJ, Carroll D. Targeted genome engineering techniques in Drosophila. Methods (San Diego, Calif.). 68: 29-37. PMID 24412316 DOI: 10.1016/J.Ymeth.2013.12.002 |
0.378 |
|
2014 |
Pauwels K, Podevin N, Breyer D, Carroll D, Herman P. Engineering nucleases for gene targeting: Safety and regulatory considerations New Biotechnology. 31: 18-27. PMID 23851284 DOI: 10.1016/J.Nbt.2013.07.001 |
0.362 |
|
2013 |
Carroll D. Staying on target with CRISPR-Cas. Nature Biotechnology. 31: 807-9. PMID 24022156 DOI: 10.1038/Nbt.2684 |
0.311 |
|
2013 |
Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda, Md.). 3: 1717-25. PMID 23979928 DOI: 10.1534/G3.113.007260 |
0.459 |
|
2013 |
Cho SW, Lee J, Carroll D, Kim JS, Lee J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics. 195: 1177-80. PMID 23979576 DOI: 10.1534/Genetics.113.155853 |
0.337 |
|
2013 |
Beumer KJ, Trautman JK, Mukherjee K, Carroll D. Donor DNA Utilization during Gene Targeting with Zinc-finger Nucleases. G3 (Bethesda, Md.). PMID 23550125 DOI: 10.1534/G3.112.005439 |
0.695 |
|
2013 |
Carroll D. Gene editing: Re-writing genomes with targetable nucleases Drug Discovery World. 14. |
0.339 |
|
2012 |
Carroll D. A CRISPR approach to gene targeting. Molecular Therapy : the Journal of the American Society of Gene Therapy. 20: 1658-60. PMID 22945229 DOI: 10.1038/Mt.2012.171 |
0.399 |
|
2011 |
Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 188: 773-82. PMID 21828278 DOI: 10.1534/Genetics.111.131433 |
0.476 |
|
2011 |
Carroll D. Zinc-finger nucleases: a panoramic view. Current Gene Therapy. 11: 2-10. PMID 21182468 DOI: 10.2174/156652311794520076 |
0.434 |
|
2010 |
Takasu Y, Kobayashi I, Beumer K, Uchino K, Sezutsu H, Sajwan S, Carroll D, Tamura T, Zurovec M. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochemistry and Molecular Biology. 40: 759-65. PMID 20692340 DOI: 10.1016/J.Ibmb.2010.07.012 |
0.393 |
|
2010 |
Carroll D, Beumer KJ, Trautman JK. High-efficiency gene targeting in Drosophila with zinc finger nucleases. Methods in Molecular Biology (Clifton, N.J.). 649: 271-80. PMID 20680841 DOI: 10.1007/978-1-60761-753-2_17 |
0.459 |
|
2010 |
Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nature Methods. 7: 91; author reply 91-. PMID 20111032 DOI: 10.1038/Nmeth0210-91A |
0.307 |
|
2009 |
Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proceedings of the National Academy of Sciences of the United States of America. 106: 9607-12. PMID 19482946 DOI: 10.1073/Pnas.0902420106 |
0.437 |
|
2009 |
Bozas A, Beumer KJ, Trautman JK, Carroll D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics. 182: 641-51. PMID 19380480 DOI: 10.1534/Genetics.109.101329 |
0.432 |
|
2009 |
Liu JL, Wu Z, Nizami Z, Deryusheva S, Rajendra TK, Beumer KJ, Gao H, Matera AG, Carroll D, Gall JG. Coilin is essential for Cajal body organization in Drosophila melanogaster. Molecular Biology of the Cell. 20: 1661-70. PMID 19158395 DOI: 10.1091/Mbc.E08-05-0525 |
0.327 |
|
2008 |
Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America. 105: 19821-6. PMID 19064913 DOI: 10.1073/Pnas.0810475105 |
0.45 |
|
2008 |
Carroll D. Progress and prospects: Zinc-finger nucleases as gene therapy agents Gene Therapy. 15: 1463-1468. PMID 18784746 DOI: 10.1038/Gt.2008.145 |
0.323 |
|
2008 |
Carroll D, Beumer KJ, Morton JJ, Bozas A, Trautman JK. Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods in Molecular Biology (Clifton, N.J.). 435: 63-77. PMID 18370068 DOI: 10.1007/978-1-59745-232-8_5 |
0.494 |
|
2008 |
Davis MW, Morton JJ, Carroll D, Jorgensen EM. Gene activation using FLP recombinase in C. elegans. Plos Genetics. 4: e1000028. PMID 18369447 DOI: 10.1371/Journal.Pgen.1000028 |
0.327 |
|
2006 |
Carroll D, Morton JJ, Beumer KJ, Segal DJ. Design, construction and in vitro testing of zinc finger nucleases. Nature Protocols. 1: 1329-41. PMID 17406419 DOI: 10.1038/Nprot.2006.231 |
0.452 |
|
2006 |
Morton J, Davis MW, Jorgensen EM, Carroll D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proceedings of the National Academy of Sciences of the United States of America. 103: 16370-5. PMID 17060623 DOI: 10.1073/Pnas.0605633103 |
0.513 |
|
2006 |
Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. 172: 2391-403. PMID 16452139 DOI: 10.1534/Genetics.105.052829 |
0.463 |
|
2005 |
Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nature Biotechnology. 23: 967-73. PMID 16082368 DOI: 10.1038/Nbt1125 |
0.475 |
|
2005 |
Lloyd A, Plaisier CL, Carroll D, Drews GN. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 102: 2232-7. PMID 15677315 DOI: 10.1073/Pnas.0409339102 |
0.38 |
|
2004 |
Carroll D. Using nucleases to stimulate homologous recombination. Methods in Molecular Biology (Clifton, N.J.). 262: 195-207. PMID 14769963 DOI: 10.1385/1-59259-761-0:195 |
0.477 |
|
2003 |
Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science (New York, N.Y.). 300: 764. PMID 12730594 DOI: 10.1126/Science.1079512 |
0.34 |
|
2002 |
Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161: 1169-75. PMID 12136019 |
0.349 |
|
2002 |
Christensen S, Pont-Kingdon G, Carroll D. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications. Genetica. 110: 245-56. PMID 11766845 DOI: 10.1023/A:1012704812424 |
0.39 |
|
2001 |
Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Molecular Cell. 8: 137-47. PMID 11511367 DOI: 10.1016/S1097-2765(01)00294-5 |
0.426 |
|
2001 |
Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology. 21: 289-97. PMID 11113203 DOI: 10.1128/Mcb.21.1.289-297.2001 |
0.45 |
|
2000 |
Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research. 28: 3361-9. PMID 10954606 DOI: 10.1093/Nar/28.17.3361 |
0.442 |
|
2000 |
Christensen S, Pont-Kingdon G, Carroll D. Target Specificity of the Endonuclease from the Xenopus laevis Non-Long Terminal Repeat Retrotransposon, Tx1L Molecular and Cellular Biology. 20: 1219-1226. PMID 10648607 DOI: 10.1128/Mcb.20.4.1219-1226.2000 |
0.45 |
|
2000 |
Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Molecular and Cellular Biology. 20: 990-1000. PMID 10629056 DOI: 10.1128/Mcb.20.3.990-1000.2000 |
0.464 |
|
1999 |
Pont-Kingdon G, Chi E, Christensen S, Carroll D. RNA expression from a site-specific non-LTR retrotransposon microinjected into Xenopus oocytes. Genetica. 104: 67-76. PMID 9949703 DOI: 10.1023/A:1003472404777 |
0.346 |
|
1998 |
Bibikova M, Wu B, Chi E, Kim KH, Trautman JK, Carroll D. Characterization of FEN-1 from Xenopus laevis: cDNA cloning and role in DNA metabolism Journal of Biological Chemistry. 273: 34222-34229. PMID 9852084 DOI: 10.1074/Jbc.273.51.34222 |
0.442 |
|
1997 |
Segal DJ, Faruqi AF, Glazer PM, Carroll D. Processing of targeted psoralen cross-links in Xenopus oocytes. Molecular and Cellular Biology. 17: 6645-52. PMID 9343428 DOI: 10.1128/Mcb.17.11.6645 |
0.412 |
|
1997 |
Pont-Kingdon G, Chi E, Christensen S, Carroll D. Ribonucleoprotein formation by the ORF1 protein of the non-LTR retrotransposon Tx1L in Xenopus oocytes Nucleic Acids Research. 25: 3088-3094. PMID 9224609 DOI: 10.1093/Nar/25.15.3088 |
0.303 |
|
1997 |
Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Molecular and Cellular Biology. 16: 6820-8. PMID 8943337 DOI: 10.1128/Mcb.16.12.6820 |
0.442 |
|
1996 |
Carroll D. Homologous genetic recombination in Xenopus: mechanism and implications for gene manipulation Progress in Nucleic Acid Research and Molecular Biology. 54: 101-125. PMID 8768073 DOI: 10.1016/S0079-6603(08)60361-X |
0.487 |
|
1995 |
Segal DJ, Carroll D. Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America. 92: 806-10. PMID 7846056 DOI: 10.1073/Pnas.92.3.806 |
0.476 |
|
1995 |
Segal DJ, Carroll D. Corrections: Endonuclease-Induced, Targeted Homologous Extrachromosomal Recombination in Xenopus Oocytes Proceedings of the National Academy of Sciences of the United States of America. 92: 3632. DOI: 10.1073/Pnas.92.8.3632A |
0.357 |
|
1994 |
Lehman CW, Trautman JK, Carroll D. Illegitimate recombination in Xenopus: Characterization of end-joined junctions Nucleic Acids Research. 22: 434-442. PMID 8127681 DOI: 10.1093/Nar/22.3.434 |
0.425 |
|
1993 |
Lehman CW, Clemens M, Worthylake DK, Trautman JK, Carroll D. Homologous and illegitimate recombination in developing Xenopus oocytes and eggs Molecular and Cellular Biology. 13: 6897-6906. PMID 8413282 DOI: 10.1128/Mcb.13.11.6897 |
0.369 |
|
1993 |
Lehman CW, Carroll D. Isolation of Large Quantities of Functional, Cytoplasm-Free Xenopus laevis Oocyte Nuclei Analytical Biochemistry. 211: 311-319. PMID 8391226 DOI: 10.1006/Abio.1993.1275 |
0.331 |
|
1993 |
Carroll D. A Recombination Sampler Mechanisms of Eukaryotic DNA Recombination Max E. Gottesman Henry J. Vogel Bioscience. 43: 639-640. DOI: 10.2307/1312155 |
0.401 |
|
1993 |
Pont-Kingdon G, Dawson RJ, Carroll D. Intermediates in extrachromosomal homologous recombination in Xenopus laevis oocytes : characterization by electron microscopy The Embo Journal. 12: 23-34. DOI: 10.1002/J.1460-2075.1993.Tb05628.X |
0.412 |
|
1992 |
Jeong-Yu S, Carroll D. Test of the double-strand-break repair model of recombination in Xenopus laevis oocytes. Molecular and Cellular Biology. 12: 112-119. PMID 1729593 DOI: 10.1128/Mcb.12.1.112 |
0.386 |
|
1992 |
Jeong-Yu S, Carroll D. Effect of terminal nonhomologies on homologous recombination in Xenopus laevis oocytes. Molecular and Cellular Biology. 12: 5426-5437. PMID 1448075 DOI: 10.1128/Mcb.12.12.5426 |
0.423 |
|
1991 |
Maryon E, Carroll D. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Molecular and Cellular Biology. 11: 3278-3287. PMID 2038331 DOI: 10.1128/Mcb.11.6.3278 |
0.441 |
|
1991 |
Maryon E, Carroll D. Involvement of single-stranded tails in homologous recombination of DNA injected into Xenopus laevis oocyte nuclei. Molecular and Cellular Biology. 11: 3268-3277. PMID 2038330 DOI: 10.1128/Mcb.11.6.3268 |
0.42 |
|
1991 |
Lehman CW, Carroll D. Homologous recombination catalyzed by a nuclear extract from Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America. 88: 10840-10844. PMID 1961753 DOI: 10.1073/Pnas.88.23.10840 |
0.386 |
|
1991 |
Carroll D, Lehman CW. Chapter 24 DNA Recombination and Repair in Oocytes Eggs, and Extracts Methods in Cell Biology. 36: 467-486. PMID 1811148 DOI: 10.1016/S0091-679X(08)60292-7 |
0.45 |
|
1990 |
Sweigert SE, Carroll D. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes. Molecular and Cellular Biology. 10: 5849-5856. PMID 2233720 DOI: 10.1128/Mcb.10.11.5849 |
0.395 |
|
1990 |
Urnes MS, Carroll D. Amylase synthesis as a simple model system for translation and hybrid arresst in Xenopus oocytes Gene. 95: 267-274. PMID 1701154 DOI: 10.1016/0378-1119(90)90370-7 |
0.312 |
|
1989 |
Maryon E, Carroll D. Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes. Molecular and Cellular Biology. 9: 4862-4871. PMID 2601699 DOI: 10.1128/Mcb.9.11.4862 |
0.446 |
|
1989 |
Garrett JE, Knutzon DS, Carroll D. Composite transposable elements in the Xenopus laevis genome. Molecular and Cellular Biology. 9: 3018-3027. PMID 2550791 DOI: 10.1128/Mcb.9.7.3018 |
0.401 |
|
1987 |
Grzesiuk E, Carroll D. Recombination of DNAs in Xenopus oocytes based on short homologous overlaps Nucleic Acids Research. 15: 971-985. PMID 3029712 DOI: 10.1093/Nar/15.3.971 |
0.47 |
|
1986 |
Garrett JE, Carroll D. Tx1: a transposable element from Xenopus laevis with some unusual properties. Molecular and Cellular Biology. 6: 933-941. PMID 3022140 DOI: 10.1128/Mcb.6.3.933 |
0.354 |
|
1986 |
Carroll D, Wright SH, Wolff RK, Grzesiuk E, Maryon EB. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Molecular and Cellular Biology. 6: 2053-2061. PMID 2946937 DOI: 10.1128/Mcb.6.6.2053 |
0.474 |
|
1984 |
Carroll D, Garrett JE, Lam BS. Isolated clusters of paired tandemly repeated sequences in the Xenopus laevis genome. Molecular and Cellular Biology. 4: 254-259. PMID 6700590 DOI: 10.1128/Mcb.4.2.254 |
0.346 |
|
1984 |
Swindle J, Ajioka J, Dawson D, Myers R, Carroll D, Georgopoulos C. The nucleotide sequence of the Escherichia coli K12 nusB (groNB) gene Nucleic Acids Research. 12: 4977-4985. PMID 6330693 DOI: 10.1093/Nar/12.12.4977 |
0.332 |
|
1984 |
Carroll D, Wright SH, Ajioka RS, Hussey CE. Genetic recombination of Xenopus laevis 5 S DNA in bacteria. Journal of Molecular Biology. 178: 155-172. PMID 6092642 DOI: 10.1016/0022-2836(84)90137-2 |
0.439 |
|
1983 |
Young D, Carroll D. Regular arrangement of nucleosomes on 5S rRNA genes in Xenopus laevis. Molecular and Cellular Biology. 3: 720-30. PMID 6855773 DOI: 10.1128/Mcb.3.4.720 |
0.45 |
|
1983 |
Carroll D. Genetic recombination of bacteriophage lambda DNAs in Xenopus oocytes Proceedings of the National Academy of Sciences of the United States of America. 80: 6902-6906. PMID 6227916 DOI: 10.1073/Pnas.80.22.6902 |
0.395 |
|
1983 |
Lam BS, Carroll D. Tandemly repeated DNA sequences from Xenopus laevis. II. Dispersed clusters of a 388 base-pair repeating unit. Journal of Molecular Biology. 165: 587-597. PMID 6190000 DOI: 10.1016/S0022-2836(83)80268-X |
0.375 |
|
1983 |
Lam BS, Carroll D. Tandemly repeated DNA sequences from Xenopus laevis: I. Studies on sequence organization and variation in satellite 1 DNA (741 base-pair repeat) Journal of Molecular Biology. 165: 567-585. PMID 6189999 DOI: 10.1016/S0022-2836(83)80267-8 |
0.456 |
|
1982 |
O'Neill FJ, Maryon EB, Carroll D. Isolation and characterization of defective simian virus 40 genomes which complement for infectivity. Journal of Virology. 43: 18-25. PMID 6286996 DOI: 10.1128/Jvi.43.1.18-25.1982 |
0.397 |
|
1980 |
Carroll D, Ajioka RS. Recombination of a eukaryotic DNA in bacteria. Gene. 10: 273-281. PMID 6254845 DOI: 10.1016/0378-1119(80)90056-6 |
0.459 |
|
1980 |
Carroll D, Ajioka RS, Georgopoulos C. Bacteriophage lambda cloning vehicles for studies of genetic recombination. Gene. 10: 261-271. PMID 6254844 DOI: 10.1016/0378-1119(80)90055-4 |
0.419 |
|
1978 |
Carroll D, O'Neill FJ. Genome maps of simian virus 40 defectives propagated in human glioblastoma cells. Virology. 87: 120-9. PMID 208262 DOI: 10.1016/0042-6822(78)90164-2 |
0.412 |
|
1976 |
Carroll D, Brown DD. Repeating units of Xenopus laevis oocyte-type 5S DNA are heterogeneous in length. Cell. 7: 467-75. PMID 986247 DOI: 10.1016/0092-8674(76)90198-7 |
0.552 |
|
1976 |
Carroll D, Brown DD. Adjacent repeating units of Xenopus laevis 5S DNA can be heterogeneous in length. Cell. 7: 477-86. PMID 782719 DOI: 10.1016/0092-8674(76)90199-9 |
0.59 |
|
1974 |
Wellauer PK, Reeder RH, Carroll D, Brown DD, Deutch A, Higashinakagawa T, Dawid IB. Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths. Proceedings of the National Academy of Sciences of the United States of America. 71: 2823-7. PMID 4527647 DOI: 10.1073/Pnas.71.7.2823 |
0.682 |
|
1972 |
Carroll D, Botchan MR. Competition between pentalysine and actinomycin D for binding to DNA. Biochemical and Biophysical Research Communications. 46: 1661-7. PMID 5062742 DOI: 10.1016/0006-291X(72)90803-0 |
0.329 |
|
Show low-probability matches. |